首页>检索页>当前

复旦大学科研团队实现新型纳米颗粒超晶格

发布时间:2025-02-28 作者:任朝霞 丁超逸 殷梦昊 来源:中国教育新闻网

中国教育报-中国教育新闻网讯(记者 任朝霞 通讯员 丁超逸 殷梦昊)纳米颗粒被认为是“人造原子”,基于其可控组装构筑而成的超晶格(或超晶体)是一类具有晶体对称性的介观凝聚态物质,在能源、催化、力学、光电器件、生物医药等领域具有重要的应用价值。面向超晶格可编程化设计与构建难题,复旦大学化学系董安钢、李同涛团队联合高分子科学系李剑锋团队及新加坡南洋理工大学倪冉团队成功实现了笼目晶格(Kagome lattice)等一系列新型超晶格材料的可控构建,为纳米颗粒自组装领域提供了全新的研究范式,有望在催化、能源、功能器件等领域带来创新性应用。北京时间2月28日凌晨,相关研究成果以“基于曲率介导的排空力构建纳米颗粒笼目超晶格”为题发表于《科学》杂志。

过去,超晶格领域的前沿研究主要由欧美研究团队主导,且大多集中于球形或凸多面体纳米颗粒的研究。复旦大学团队另辟蹊径,提出利用非凸(nonconvex)纳米颗粒为构建基元,并通过调控颗粒的局部曲率,创造出类原子价键特性的颗粒间定向相互作用。

“我们设计并合成了哑铃形纳米晶,利用其头部与腰部曲率自互补的特点,实现了互锁式长程有序组装。”复旦大学化学系教授董安钢表示,这一原理类似于“锁与钥匙”的关系,哑铃形颗粒之间的凹凸互补组装模式,犹如钥匙与锁芯之间的精准匹配。

“颗粒凹凸互锁组装模式克服了传统纳米颗粒相互作用难以精准调控的难题,为纳米基元键合方向性的调节提供了前所未有的精度与灵活性。”董安钢说。

通过构建一系列新型超晶格结构,团队展示了非凸纳米颗粒作为构建基元的巨大潜力,其中Kagome晶格是最具代表性的超晶格结构。复旦大学化学系青年研究员李同涛介绍:“这种Kagome结构非常有趣,它由共顶点的正六边形和正三角形周期性排列构成,是一种非密堆积的平面拓扑结构,也是我国传统灯笼、竹筐编织中的常见图案。”

“引入具有凹面特征的纳米颗粒作为构建基元,是这项研究的最大亮点。”在董安钢看来,这一研究思路为超晶格材料的按需定制开辟了全新的研究方向和视角。通过调控颗粒的曲率特性,并结合机器学习,未来有望真正实现超晶格材料的可编程化设计,进而推动纳米组装科学的发展。

0 0 0 0
分享到:

相关阅读

最新发布
热门标签
点击排行
热点推荐

工信部备案号:京ICP备05071141号

互联网新闻信息服务许可证 10120170024

中国教育报刊社主办 中国教育新闻网版权所有,未经书面授权禁止下载使用

Copyright@2000-2022 www.jyb.cn All Rights Reserved.

京公网安备 11010802025840号