张:单单用字母代表数,还不是代数。例如,加法交换律写为:a+b=b+a,虽然也用字母代表数,却和代数的思想方法没有关系。用字母代表数,即设某量为x的做法,只是运用代数方法的第一步。代数的思想方法,其核心是基于含有x的“式”的运算来求得未知数,最后解决数学问题。从数的运算到“式”的运算,实行对消和还原,是算术与代数的根本区别。 唐:小学数学的“代数”内容就是能够部分地解出一元一次方程;ax+b=c。至于ax+b=cx+d这样的方程小学里解起来还是有些困难。 张:难在含x的项的合并,即关于“式”的运算。小学里解方程,用字母代表数之后,主要使用逆向思维进行对消和还原。例如2x-1=5,用逆向思维也可以还原出x=3。中学里则要引入负数、进行“式”的运算,用同解概念进行对消和还原,按照程式化的规则,一步步机械地做下去就能得到解。那就是代数思维。这就是说,算术中的逆向思维也有还原和对消的思想,需要学习,但是思维过程是一题一解,没有固定的程式,不能程式化。所以,小学学习逆向思维不要搞得太难。太多了,反而会干扰未来方程的学习。 唐:关于方程概念的争论也很多。如:x=1,是不是方程? 张:毛病出在“含有未知数的等式叫方程”。大家都把它当作方程的定义,所以会出现x=1,0×x=0,x-x=0是不是方程这样的怪问题。其实,这句话只谈了方程的表面,实在不重要。方程的本质是为了求未知数,在已知数和未知数之间建立一种等式关系。既然方程的本意就是要求未知数,如果x=1,未知数已经求出来了,也就没有方程的问题了。这类问题与我们学习方程知识没有关系,应当淡化。正如西南师范大学的老校长陈重穆先生所说,需要“淡化形式,注重实质”。 唐:陈重穆先生是代数学家,首批代数学博士导师。他提出“淡化形式,注重实质”,值得深思。 解决问题与应用题是什么关系 唐:在数学新课程中,以前特别熟悉的应用题不见了,取而代之的是解决问题。请张老师从数学的角度谈谈这两者之间的关系。 张:数学问题可以有多种分类方法。例如,可以分为常规的练习题和非常规的探究性问题。通常所说的“解决问题”,则比较关注非常规问题。另外,还可以分为纯数学问题和应用数学问题。像歌德巴赫猜想这样的纯数学问题,来源于数学内部;至于“神舟7号”飞行轨道的计算问题,则属于应用问题,来源于现实生活中各行各业所涉及的数量关系。 小学数学里的应用问题是客观存在的,似乎不必回避。应用题可以改进,却不能取消。我们反对的是过去小学数学中那些矫揉造作、远离现实、缺乏教育价值的应用题。新的应用题,强调数学模型的建立,问题的条件可以冗余,数据需要取舍,模型需要建立,结果需要验证,值得提倡。 唐:张老师,你常常提起20世纪最伟大的数学教育家弗赖登塔尔举过的一个例子:“昨夜外星人访问我校,留下了一个巨大的手印(图),今夜他还要来,试问:我们给他坐的椅子应该有多高?他用的新铅笔应该要多长?”这个问题是应用题吗? 张:我认为这是好的应用题。首先,这是一个学生喜欢的题材,虽然不是实际发生的问题,却是可以领会理解的情境。正如鸡兔同笼问题一样,是一种好的数学模型。其次,它蕴含了丰富的数学思想,非常深刻地体现了比例的思想。学生通过测量巨人的手和自己的手的大小比值,然后按比例放大,将比值用于设计椅子高度和铅笔长度。这是比、比例、相似等数学本质的体现。再如,日本有一堂公开课,内容是要求学生在一块矩形场地上设计花坛,使得花坛的面积为场地的一半。这是数学和艺术相结合的应用题。类似这样的问题就和过去的应用题有很大的区别,是我们需要关注的。 小学几何内容为什么要增加 唐:新课程在空间与图形领域增加了一些新的内容,从您的角度看,为什么要增加? 张:几何学的内容很丰富。首先是直观几何,就是对平面图形、立体图形的认识;其次是一些求面积、体积的问题,属于度量几何。在实施新课程以前,小学数学主要包括这两部分内容。后来我们发现,大学数学的许多问题,它的原始思想是非常简单、非常朴实又非常重要的。于是就增加了以下三个方面的内容。 第一是演绎几何,比如说垂直、平行、线段、射线这些名词都属于演绎几何的范畴。第二是运动几何,如平移、旋转和对称,是小学生需要和可以接受的内容。第三是坐标几何。总体来看,现在小学数学里的几何学,包括直观几何、度量几何、演绎几何、运动几何、坐标几何这五大块。从过去的两块扩大到五块,扩大了我们几何学的视野,丰富了我们对几何学的感受,是十分有意义的改革。 唐:不过对于小学来说可能还是直观几何最为基本。张老师您认为直观几何学教学的重点是什么? 张:我想小学数学当中,直观几何最根本的或者最核心的内容就是用平面来描述立体。事实上我们生活的空间是三维的,接触的物体都是立体的,但是留在眼睛视网膜上的、画在教科书上的都是平面的;因此,空间图形平面化,通过平面图形想象空间物体是直观几何的重要内容。新课程的教材中,通过照相机从“不同角度下拍摄照片”,通过三视图科学描述简单对象,都是要用平面图形描写立体事物。 什么是长度、面积、体积 唐:小学教材中大都这样表述面积和体积:“物体表面或平面图形的大小叫面积”,“物体占有空间的大小叫做物体的体积”。这是它们的定义吗? 张:这些只是对面积、体积的描述,不是严格的定义。因为总是先有面积、体积的定义,才能谈大小。在严格的定义里不能出现“大小”的词汇。人的概念有两种,一种就是生活中自然形成的,比如说面积、体积,大家都明白,不必给出严格的定义(那是大学数学课程的内容)。现在的教材上,把体积说成“占有空间的大小”,要学生记住,实在没有必要。事实上,要理解“空间”,比理解体积更困难,往往是越解释越糊涂。这说明,对于这类定义不要太当真。在小学里,学生头脑里的体积直觉,已经够用了。 唐:在课堂上,我们会看到类似“排水法测土豆的体积”的案例。 张:那是物理方法。数学上可以运用,做一些教学实验。但是,数学的本质是如何“计算”某些图形的面积和体积。注意是找出“计算”的方法和公式,并不是一味地度量。面积的严密定义是“一些集合类上定义的有限可加、运动不变、单位正方形面积为1的集合函数”。这是大学里研究的问题。但是在小学课堂上,要让小学生体会面积、体积的一些特征:例如可以演示,不相交的两图形合并后的面积是两图形面积之和,图形搬来搬去,其面积不变,进而可以用单位正方形的割补、拼接去度量复杂图形面积,等等。 小学里为什么要渗透平面坐标思想 唐:小学数学为什么要渗透平面坐标思想?坐标的核心思想就是确定位置吗? 张:很多的教案都这样说,其实不准确。学习坐标确定位置,好像用经纬线确定地球表面上的位置一样,是地理学的研究目标。数学课程中更重要的是用坐标来表示几何图形。例如,两个坐标都一样的点(y=x);第一个坐标为1的点(x=1),等等,都能表示一类直线。同样也可以用坐标描绘一个矩形的“熊猫馆”。 唐:谢谢张老师,帮助我们基于数学的本质来分析这些问题,很受启发。 张:谢谢,希望有更多的机会与小学数学教师交流数学问题。 (本文由2008年教育部暑期中西部小学数学培训电视节目脚本压缩而成。) (原载《人民教育》2009年第2期) |