用一句话来概括中国数学教育的特色,那就是:“在良好的数学基础上谋求学生的数学发展。”这里的“数学基础”,其内涵就是三大数学能力:数学运算能力、空间想象能力、逻辑思维能力;这里的“数学发展”是指:提高用数学思想方法分析问题和解决问题的能力,促进学生在德智体各方面的全面发展。与此相应的教学方式,则是贯彻辩证唯物主义精神,进行“启发式”教学,关注课堂教学中的数学本质,倡导数学思想方法教学,运用“变式”进行练习,加强解题规律的研究。 这样的特色,也可以用“数学双基教学”的习惯性说法加以表述。“双基”是指基础知识和基本技能。但是“双基教学”不等于“双基”本身。作为一种教学思想,“双基教学”并不是单纯地强调打基础,还包括在打好基础之上的发展。以为“双基教学”不要发展,那是一种误解。 中国的数学课堂教学,具有许多与世界主流研究不同的特色。有一个时期,这些特色或者被当作批判扬弃的对象,或者被认为是雕虫小技不予重视,还有一些则停留在朴素的层面,缺乏理论加工。相对于大肆追捧国外的一些光怪陆离却并无实践效果的“概念”和理论,我们未免有点“妄自菲薄”,太瞧不起自己了。 以下我们分别简述中国数学教育的六个特征,并和国外的有关提法相对照,借以显示中国数学教育的特色所在。 1. 注重“导入”环节。 涂荣豹指出,中国数学教学长于由“旧知”导出“新知”,“引入新课”往往是数学教师最为精心设计的部分①。注重“导入”环节,是贯彻启发式教学的关键之一。一个好的“导入”设计,往往会成为一堂课成功的关键。经过多年的积累,我国在“数学导入”上,已经发展为一门艺术。 国外引进的、强调联系学生日常生活的“情境设置”,只是“导入”的一种。事实上,就数学课堂而言,能够设置与学生的日常生活相联系的“情境”,只能是少数。大多数的数学课,尤其是大量的“数与式”的运算规则的程序性数学内容,多半没有现实情境可言。例如,因式分解、合并同类项、幂和指数运算等,很难设置现实情境。但是可以用适当的方式导入。比如,用“整数的质因数分解”导出“因式分解”、用“同类归并”的朴素思想导入“合并同类项”、用“连加为乘”导出“连乘为幂”等都是可行的。中国数学课堂上,呈现了许多独特的导入方式,除了现实“情境呈现”之外,还包括“假想模拟”、“悬念设置”、“故事陈述”、“旧课复习”、“提问诱导”、“习题评点”、“铺垫搭桥”、“比较剖析”等手段。 这些导入方式,是“启发式”教学的有机组成部分。最近一段时间以来,我们提倡“情境教学”是正确的,但是,人不能事事都直接经验,大量获得的是间接经验。从学生的日常生活情境出发进行数学教学,只能是启发式的“导入”的一种加强和补充,不能取消或代替“导入”教学环节的设置。坚持“导入新课”的教学研究,弄清它和“情境设置”的关系,是我们的一项任务。 2.“尝试教学”。 1980年代,顾泠沅通过群众性地总结当时的数学教育优秀个案,提出“尝试指导、效果回授”的教学策略②,风靡大江南北。小学数学教育界,则有邱学华倡导的“尝试教学法”③,具有全国性影响。他们的经验中都有“尝试”二字。这是一个有价值的“创造”。 西方相应的理念是“探究、发现、创造”。但是,对于中小学生而言,在课堂学习中,要在短短的九年义务教育中,把人类几千年来反复思考、经过实践检验的最基础的知识“探究、发现、创造出来”,那是难以做到的。 在数学教学中,让学生进行“尝试”,比较符合基础教育的实际。尝试的含义是,提出自己的想法,可以对,也可以不对;可以成功,也可以失败;可以做到底,也可以中途停止。尝试,不一定要“自己”把结果发现出来,但是却要有所设想、敢于提问、勇于试验。让学生在听取教师的讲课时,根据自己或对或错的“尝试”进行对照,并通过师生互动,最后把握知识的真谛,这是有效的可以操作的自主学习方式。 总之,“尝试教学”的含义较广,它可以延伸为“探究、发现”。“尝试教学”,可以在每一节课上使用,探究、发现数学规律,则只能少量为之。“尝试教学”,应该从理论上进一步探讨。 |